
206090

/7/.-/?, .-41.

O_-/T

,.f-

A Scalable Distributed Approach to Mobile
Robot Vision

(NAG9-828)
9-1-1995 to 8-31-1996

Final Report

Benjamin Kuipers, Principal Investigator

Robert L. Browning, Graduate Research Assistant
William S. Gfibble, Graduate Research Assistant

April 30, 1997

Abstract

This paper documents our progress during the firstyear of work on

our originalproposal entitled"A Scalable Distributed Approach to Mobile

Robot Vision".

We are pursuing a strategyfor real-timevisualidentificationand track-

ing of complex objects which does not relyon specializedimage-processing

hardware. In this system perceptual schemas represent objects as a graph

of primitive]eatures. Distributed software agents identify and track these

features, using variable-geometry image subwindows of limited size. Ac-

tive control of imaging parameters and selective processing makes simulta-

neous real-time tracking of many primitive features tractable. Perceptual

schemas operate independently from the tracking of primitive features, so

that real-time tracking of a set of image features is not hurt by latency in

recognition of the object that those features make up. The architecture

allows semantically significant features to be tracked with fimited expen-

diture of computational resources, and allows the visual computation to

be distributed across a network of processors. Early experiments are de-

scribed which demonstrate the usefulness of this formulation, followed by

a brief overview of our more recent progress (after the first year).

Keywords: Active vision, vision architectures, object recognition.

1 Introduction

1.1 Active Perception

The active approach to computer vision exploits the observation that certain vi-

sual processing tasks are fundamentally easier when performed within a control

loop involving both the environment and the perceiver. Active vision employs

a variety of techniques to effectively manage the complexity of the visual sig-
nal without complex representations of the physical world or complete, high

resolution sampling of the entire visual field.
An active vision system may limit its visual processing to regions of the visual

field that are expected to have information relevant to the agent's current goals.

This can be accomplished by varying the resolution at which the visual space

is sampled or by limiting the spatial extent of the regions of interest. Both

techniques dan dramatically decrease the density of the visual input and hence

the computational resources needed to process it. Active vision systems attempt

to acquire only the information necessary for a given set of tasks and to process
that information in a goal dependent fashion.

Decreasing the quantity of information that must be processed by these se-

lective methods and tailoring the computations performed to reflect the nature

of the given task increases the rate at which the system can process a given

visual signal. This allows the system to respond more quickly to changes in the
world; in the context of an embodied agent interacting with an unpredictable en-

vironment, long latencies in response to sensory inputs can lead to unacceptable

performance.

1.2 Visual Tasks For Mobile Robots

Our approach to active vision is oriented toward solving problems related to

mobile robot navigation, exploration, and map-building. The following tasks
are typical of those required of a mobile robot vision system:

Landmark tracking. A mobile robot should be able to identify visual land-

marks that are significant for navigation, such as strong vertical edges

along a corridor, or the extreme point of a nearby convex corner. The

tracking of landmarks fixed in world space allows the robot to infer its
own motion and provides useful feedback to motion control laws [10].

Obstacle detection. A mobile robot must be able to detect objects that might

impede its progress. Also, active (possibly hostile) agents such as moving
graduate students and floor polishers should be detected and avoided.

Location of traversable spaces. As a complement to obstacle detection, the

robot must be able to find spaces that it can navigate without obstruction.

Place recognition. The Spatial Semantic Hierarchy (SSH) framework for robot

spatial reasoning [8] characterizes places by a measure of "distinctiveness."
A robot vision system should notice when its current neighborhood is a

distinctive space such as an intersection of hallways, a concave or convex

wall corner, etc. It has been shown that characterization of such places

allows the robot to build useful maps of its environment [13].

Identification of regularities. By exploring the relation between its actions

and its sensory input, the robot should be able to identify domain-specific

• regularities that provide useful perceptual features [13]. For example,

vertical edges are important features in many environments, while indoor
office environments also include many horizontal edges.

In a complex environment there will generally be a number of visual tasks to

be performed concurrently: landmarks to be tracked, places to be recognized,
and a variety of obstacles of which the system must remain aware. This suggests

a natural decomposition of the problem into a number of independent visual

routines each of whose goal is the fulfillment of a given visual task.

In the next section we present such a decomposition. We model the types
of visual tasks described above as problems in constraint satisfaction given a

symbolic description of the primitive features of the scene. Generating such
a symbolic description is a task-dependent process which is driven by the op-

eration of simple reactive image feature trackers. Following the description of

our philosophy, we discuss some of the relevant features of our implementation.

We then discuss experimental results which suggest that our method may be

applied to a range of real tasks in robot vision, and finish with a brief overview

of our more recent progress.

During the course of this research project, the following papers were pub-
lished:

• "ARGUS: A Distributed Environment for Real-Time Vision" [5]

• "Slow visual search in a fast-changing world" [6]

• "Dynamic binding of visual percepts for robot control" [9]

2 Concepts

2.1 A Hierarchy of Visual Routines

We propose a two-level hierarchy of representation which allows complex vi-

sual phenomena to be abstracted into symbols that the robot can manipulate

more readily than raw image data. At the top level of the hierarchy, perceptual

schemas perform model-based processing to detect and identify complex phe-
nomena in the world. Underlying the perceptual schemas are primitive trackers

which translate features of the raw data (primitive features) into a representa-

tion which can be used for the perceptual schema's model processing. In the

following two sections, we briefly describe each of these levels and then discuss

some of the implications for scalable distributed processing.

2.1.1 Perceptual Schemas

A perceptual schema can be regarded as a virtual sensor tuned to respond to a

particular landmark, spatial property, or event of interest [1]. A robot may have
many different perceptual schemas, any number of which could be active at a

given time, depending on the robot's state and current goals. For instance, a

robotmighthave a particular perceptual schema which recognizes its recharging
station, another which recognizes open pathways in nearby space, and another

which recognizes doors. The open-pathways schema would likely be always
active, the door-detection schema active only when the robot is trying to find

a door, and the charger-detecting schema active when the robot's batteries are

running low.
Perceptual schemas have a current state expressed as a vector of character-

istic values. These values include measures of the position, pose, and extent

of the tracked feature, and an evaluation of the schema's confidence that it

has accurately matched its model to an image-space artifact. This vector of

characteristic values can be used by higher-level processing to reason about its
environment.

An initial hypothesis of model detection can be made based on a match

between a single primitive feature of the input image stream and a feature of

the model. Confidence in a proper match increases as more primitive features

and their spatial relationships are matched with the model. The process of

incrementally matching the model against features of the image stream can be
thought of as a model-directed exploration of the image stream [7].

For example, consider a perceptual schema tuned to detect doors in an office-

like environment. A model of a door could contain primitive features including

two long parallel sides connected by a straight (but not necessarily perpendic-

ular, depending on viewing angle) edge at the top, height of about seven feet,

height-to-width ratio of about 2:1, and a difference in depth between the edge

features and the space between (assuming that only open doors are of interest).
Such a model could be represented by a simple relational graph, or by a map

of distinctive points and interconnections following the Spatial Semantic Hier-

archy [8]. An initial hypothesis of "doorness" for a region of image space can
be made upon successful location of a single model feature, such as a vertical

line. The model of a door predicts that there will be an intersecting line at the

top of a vertical line. If such a feature is found, the probability that a door has
been found increases incrementally and an attempt is made to locate the next

primitive feature of the model.

2.1.2 Primitive Feature Trackers And Visual Control Laws

Perceptual schemas utilize primitive trackers and their associated visual control

laws to construct a representation for comparison with a model. Primitive

trackers are the simplest level of interaction between the robot and the raw

image stream. Each primitive tracker locates and tracks a single simple image
feature over time.

A primitive tracker consists of a window on the image stream and a visual

control law that reactively adjusts the parameters of the window. Primitive

features are local features of image space, such as lines and corners, which

occupy only a small portion of the robot's field of view. Therefore, they can be

tracked without processing the entire image stream, by focusing attention on a
small image window. In the case of a binocular or trinocular stereo system, the

"imagestream" could in fact be an aggregate stream of multiple image sources,
with imaging parameters describing a multi-dimensional "window" that places

an imaging window independently on each image stream to find corresponding

features and determine vergence.
The visual control law determines what type of image feature the tracker is

sensitive to and a policy for tracking that type of feature. A visual control law

consists of a feature extraction step followed by a feature tracking step. Feature

extraction is a composition of simple image processing operations generating

candidate representations of the tracked image-space feature in the local win-

dow. Feature tracking is the determination of a best match among the candidate

target features.
The window parameter adjustments that take place as a result of feature

tracking do not necessarily leave the same portion of the feature under the

tracking window. In certain situations, it is appropriate for the control law to
"walk" the .window along a spatially-extended feature such as an edge. This is a

convenient way of dynamically exploring the relationships among spatially local
features such as corners that define the extent of extended tracked features.

By separating visual processing into two weakly-coupled layers, real-time

performance becomes primarily dependent on primitive feature tracking, with

perceptual schema matching taking place in the background. Primitive feature

tracking is tractable for three distinct reasons. First, each primitive feature is

local in image space and processing can be restricted to small windows (currently
about 1024 pixels or smaller). Second, features are tracked only when either

triggered by a conspicuous event in the data ("pop-outs"), or when suggested by
the model in a perceptual schema. And third, as discussed in the next section,

the size and locality of primitive feature trackers allows them to be naturally

allocated to simple parallel processors.

2.1.3 Implications For Scalable Processing.

Primitive trackers require only a small, localized segment of the raw image

stream to perform their tracking operations and have no data dependencies on

other trackers. Likewise, perceptual schemas depend only on a trickle of sym-

bolic outputs from primitive trackers (a few words per frame describing the

current tracker parameters). These properties have several important conse-

quences for scalable processing. First, for a given number of visual routines,

the computation can be performed by several small (and inexpensive) proces-

sors instead of one powerful processor. Second, the small data rate required
means that trackers can be distributed over a network with modest bandwidth.

Third, the separation of perceptual schemas from feature trackers means that
robot performance degrades gracefully as computational resources are absorbed

during activity.
Figure 1 shows a conceptual model of a robot vision system based on our

architecture. Multiple perceptual schemas, each controlling multiple feature

trackers, have a distributability that is relatively fine-grained with respect to

the total number of tasks being performed. Any link between a perceptual

Frame
Grabber

Schema

Schema

Figure 1: Data connections between schemas, trackers, and the image source.

schema and a feature tracker or between a feature tracker and its source of

image data can be either a local-node or a network connection.
As described above, each primitive tracker requires an input of about 1 kbyte

or less of data per frame (32 by 32 pixel window). For a real time vision system
with a frame rate of 30 Hz, this is a total data bandwidth of 30 kbytes/sec per

tracker. Our experiments have shown that simple features such as vertical lines

can be reliably extracted and tracked with about 15 integer operations per pixel,

for total compute resource requirement of .45 MIPS. This is well within the ca-

pabilities of cheaply available PC-class processors and DSP chips. A number

of such chips supported by a network of several Mb/sec (comparable to work-

station network interfaces) is capable of tracking primitive features numbering
into the hundreds.

Distributed and parallel processing are not new ideas in the computer vision

community [15, 12, 11, 3]. However, most efforts in multiprocessor vision have

taken an approach which parallelizes a solution to a particular visual problem

rather than exploiting the natural parallelism of visual tasks. While brute-

force approaches to parallelization can be effective, a more elegant approach
is to cast the problem in terms which let the parallelism fall out naturally.

The semantics of perceptual schemas and primitive feature trackers allow visual

routines to be expressed in a highly distributable form. Further, our experiments

have indicated that a wide variety of real visual problems can be conveniently
expressed in these terms.

A key feature of our approach is the graceful degradation of performance

under load. Consider the door-recognizing schema described earlier. As it was

described, such a schema would require several successive hypotheses to be

confirmed before a reasonable match confidence was reached: finding an initial

vertical line, then locating a corner, then another corner, and finally confirming

a region of greater depth in between the two vertical lines. Due to its sequential

nature, this process could take several image-frame times to complete, which
amounts to a significant fraction of a second.

Humansperformquitewell in tasks requiring recognition of these types of

spatial relationships, and latencies of several hundred milliseconds are not un-

usual or particularly problematic [14]. A human can easily identify a door even

if it is moving through the perceived image. Clearly, the process of recognizing

the door is somewhat independent from the real-time task of tracking its posi-

tion in the image. A computer vision system which depended on recognizing a
door in each frame would not be able to function with such long latencies, since

the door could have moved too far between image capture and recognition to

make a dense-sampling assumption valid.
On the other hand, primitive feature tracking is a process that can be done in

parallel with model matching, since each primitive tracker depends only on the

raw image stream. While model-matching is taking place "in the background,"

the graph representation of the prospective landmark is dynamically maintained

by the primitive trackers. Even if the latency between initial feature acquisi-
tion and final model match confirmation is many frame-times, the component

primitive features of the prospective schema target will be tracked at the rate of

incoming frames. Therefore, a hard limit on the time to complete a particular

perceptual schema is determined by the demands of the robot's current task
rather than by the necessity of model-matching for successful tracking. Adding

more schemas for the robot to run concurrently will (up to the point where

the system can no longer run its primitive trackers in real time) only cause a

slowdown in the operation of perceptual schemas.

3 Implementation Details

3.1 Perceptual Schemas

ARGUS describes the visual structure of objects using view templates. A view

template is a tree-structured description of the object's parts and their geomet-

ric relationships. Each part is described as an instance of a primitive image
feature plus any details. Each detail is a subtree, which may have parts of its

own. The geometric relations between object parts are encoded in geometric
constraints. Geometric constraints have two parts: one or more measures of

object properties and a relation between those measures. View templates are

loaded and compiled dynamically by the system from expressions in a simple

special-purpose language.

3.1.1 Measures

Measures are geometric operators which return a scalar, vector, or bounding-

box value for a particular property of a single object part or of a relationship
between several parts. Measures are a form of "instrumentation" placed on

and between the parts of a model. Typical measures include orientation(z),

bounds-box(x), angle-beZween(x, y), size(x), cenZer-poin_(x), aspecZ-ratio(x),
and end-point(x). In each case, the significant variables are subparts of the
model.

3.1.2 Relations

Relations are real-valued functions which return a measure of agreement or dis-

agreement (on the interval [0, 1]) with a predicate. Relations apply to one or

more measures. Some relations understood by AR6us include equal-values(x, y)

(defined for scalar z and y, coincident-points(z, y) (defined for complex z and

y), and congruent-boxes(z, y) (defined for bounding boxes z and y). The vari-
ables in relation statements are measures. In many cases, a relation is designed

to compare a measure to a fixed value. Consider a relation that specifies two

features fl and f2 are perpendicular to each other. The constant measure _ is
compared against the measured angle:

R = equal-values(a_gle-between(fl, f2), _)

3.1.3 Projective invariance

View template models are a simple representation of objects as a constellation

of visible features. These models do not directly represent the three-dimensional

structure of objects, and so they are vulnerable to object self-occlusion and the

other weaknesses of 2D representations of 3D objects. Ideally, geometric con-

straints are specified in such a way as to be invariant to affine distortions of the

object's projected image, but the view-template framework does not enforce the

restrictions on model construction and geometric constraint definition required
to ensure affine invariance for the entire model. We have found that, in general,

a straightforward representation of an object's geometry can be made invariant

under image scaling and rotations both in and out of the imaging plane. When
view template models are constructed for particular robot tasks, the applicabil-

ity of specific models can be evaluated and multiple models of the same object

can be used, if needed, to capture the range of possible viewpoints.

3.1.4 Visual search

Objects are located in the visual stream by a coarse-to-fine visual search aug-

mented by feature-based return inhibition. Each type of primitive feature de-

fines a mechanism for salience map generation. A salience map measures the

likelihood that a particular image region is salient to the current search task.

Salience maps are generated from a low-resolution attention buffer which spans

the entire search region. The salience map search directs attention to objects
which match the key feature representing the target object. For instance, a

search for a green block might direct attention to any visible region of green

pixels. Further model-matching is required to determine if the attended object

matches the view template of the target. If it does not, that feature is added
to an inhibition list of features known not to be the key feature of the actual

object being searched for. The feature is still tracked, allowing a moving camera

to successfully perform visual search without repeatedly returning to candidate

objects that it has already rejected.

3.2 Primitive Feature Trackers

So far, we have implemented a small number of primitive feature trackers which,

although designed for expedience rather than optimality, have served our pur-

poses adequately. With only simple image-processing algorithms, the system
can successfully track real, physical objects under conditions of unknown cam-

era and object motion. With the addition of state-of-the-art image processing

techniques, we expect that performance will be still better. An.Gvs currently

supports primitive feature trackers for either edges (lines) or colored blobs.

3.2.1 Edge Tracking

Vertical line tracking is a five-step process which the primitive feature tracker

applies to each lk-pixel frame. Horizontal line tracking is performed using
the same computational functions but transposing the image before processing.

Since only a tiny image buffer is processed and computationally inexpensive

methods are used, vertical line tracking computations are very fast on typical

computing hardware. Processing steps are:

Edge detection. The Sobel edge operator [4] is applied to get an estimate of

the image intensity gradient. The Sobel operator was chosen for its com-

putational simplicity and somewhat improved noise performance relative

to simpler methods.

Vertical segment detection. A degenerate Hough transform [4] is applied to

the gradient estimate image. The accumulator array is parameterized by

horizontal and vertical position of short vertical line segments. Gradient

direction and strength information are used to determine whether or not

a particular pixel votes for a vertical line segment at each location. The
number of accumulator bins that each pixel can vote for is limited to two,

greatly decreasing the computational expense of this operation.

Segment linking. The accumulator array from the previous step is scanned
for vertically adjacent strong segments. A list of extended segments with

their positions and strengths is constructed.

Line matching. In its initial frame, the tracker finds the strongest vertical

line segment in the image and records its position in the image. A PID
controller predicts the next position of the tracked line segment. A simple

distance metric finds the segment in the current frame most similar to the

predicted line. If the tracker fails to find a sufficiently good match, it sets

itself to a lost state and discontinues tracking.

Window adjustment. The tracker adjusts its window position, dimensions,

and zoom in order to keep the predicted position of the tracked segment
in the center of the window and to keep the entire vertical extent of the

segment inside the window.

9

Figure2: Edgetracker'sviewoftheedgeof aflashcard.

Each tracker calculates a confidence measure which takes into account the

length of time the line has been tracked, the strength of the line being tracked,

and the length of line viewed. Maximum confidence is achieved when the tracked

line is a line segment contained completely within the tracker's window. Window
adjustments perform a simple hill-climbing operation to maximize the confidence

by adjusting window size and zoom to get the best amount of the tracked line
in the window. Figure 2 is a snapshot of an edge tracker's sub-window onto

the image stream. The narrow inner outline outlines the edge within this sub-

window that it is actually tracking.

Total computation involved in the line tracking operation is only a few tens

of operations per image pixel. The line tracking routine runs at a rate of over

40 frames per second on a typical Sun SPARC workstation. The data rate of
images to the tracker is set to 1 Kbyte or less per frame, depending on the

window geometry.

3.2.2 Blob Tracker

The blob tracker is capable of tracking a single contiguous blob of similar color.

Figure 3 shows the adaptive color tracker tracking a LEGO TM block. The left

image shows the attention buffer window used to track the block, and the right

image shows a bitmap of the pixels that the tracking algorithm identifies with

the object. Each incoming image is converted to a pixel-membership bitmap by

a color oracle (described in Section 3.3), and the best-match contiguous blob

(according to distance metrics similar to those used for the edge tracker) of
acceptable color is tracked. Section 5 mentions some more recent improvements.

3.3 Color Oracles

To handle color, our feature trackers use a modular, color matching strategy,

where color validity is determined by consulting an appropriate "color oracle".

10

Figure3: Adaptive-color tracker tracking a block, left: Attention buffer image.

right: bitmap of pixels that are a part of the block.

A given tracker's oracle can weigh a number of factors to decide whether or not

a given pixel belongs to the object. These factors might include the histogram of
colors previously accepted, the geometric position of the pixel in question, or the

color distance from other pixels in the object. At the end of the period covered

by this report, oracles only used a fixed set of colors to make their determination

of membership. Section 5 describes some more recent improvements.

3.4 Support for Scalable Processing

In A_tGUS, connections between objects, like the connection between a feature

tracker and its parent schema, may either be local connections with both compo-

nents running on the same machine, or remote connections with each component

running on a different machine. At the coding level, this distinction is hidden
by a simple distributed object system which includes a Distributed Object Pre-

Processor (DOPP), a service database, and a lower level support library.
Whenever an object providing a service is created, it registers itself with a

service database. This database keeps track of what services are available and

where. For example, when the object representing the frame grabber on a par-

ticular machine starts up, it registers itself as providing 'RGBMonocularVideo'

on a particular port on its host machine. Later, when a new feature tracker

needs an image stream, it consults the service database to determine where the
'RGBMonocularVideo' service is being provided, and to establish the connec-
tion to the server. This added level of indirection in locating the provider of

a given service makes it easier to reconfigure the system (even while running),
and makes it possible for the service database to perform some load-balancing

11

functions.
Tomakecoding our distributed objects easier, we developed DOPP, a pre-

processor (currently for Scheme and C++ source) which automatically generates

the support functions necessary to distribute a particular object class. Classes

are defined normally, but annotated with special keywords indicating which
methods should be available remotely. DOPP can then generate the underly-

ing code necessary to create the proxy objects, instantiate the remote object
servers, and handle object specific communications.

The most primitive foundation of our distributed object system is a small

body of code providing the functionality which is independent of the particu-

lar class being distributed. This includes the service database, the distributed
object server, the remote method server template, and the lowest level data
communication functions.

3.5 RScheme

After developing the core vision technologies in C++, which was an appropri-

ate language for that system's high computational demands, we decided that
we needed a more flexible language for higher level control. At the higher lev-

els, we felt power and expressiveness were significantly more important than

speed. After some consideration we settled on Scheme, and began the process

of augmenting a locally developed version, RScttI_ME 1, for our specific needs.

In order to support our distributed object system, and in preparation for the
more recent work on a control language described in Section 5, RScHEME needed

better support for threads, asynchronous network IO, and richer synchronization
primitives. For several months we worked with the RSCHEME maintainers to add

the required functionality to the language. In addition we translated the low-

level primitives of our distributed object system to Scheme, and added support

for Scheme code generation to DOPP.
We also created a Scheme library to control our Rhino arm. The Rhino is a

Rhino Mark IV robot arm with a fixed base, five degrees of freedom, and a two

finger gripper. The Scheme library handles distributed communication with the

arm for issuing commands and collecting status updates.

4 Experiments

4.1 Tracking Flash Cards

Our first experimental apparatus consisted of an uncalibrated low-resolution

monochrome CCD camera with a wide-angle lens, an Apple Macintosh 660 AV,

and a Sun Sparc-10 workstation. Video frames were captured by the Macintosh,

and appropriate subimages were extracted by a software agent and forwarded

IRScHEME is a portable object-oriented Scheme system intended for use in language re-
search projects implemented by Donovan Kolbly at the University of Texas at Austin, with
direction from Prof. Paul Wilson. See <ht¢p ://vww. rosatte, com/c]onovan/rs/>

12

Horizontal line tracker

Vertical line tracker

Figure 4: Perceptual schema tracking a real-world object, showing primitive
feature windows.

Figure 5: Perceptual schema tracking a less ideal rectangle.

across the departmental ethernet, which is shared by many other machines, to

each active primitive feature tracker. Each extracted subimage was limited to

lk pixels in size, but the geometry and zoom factors were controllable by the
tracker.

To test the effectiveness of the schema, we pointed the camera at an as-

sortment of rectangular objects (see Figures 4 and 5). The relevant schema
successfully identified rectangular shapes when presented with doors, windows,

computer monitors, and sheets of paper. Typically the schema required twenty
to fifty frames to completely construct its model and confirm that it was track-

ing a valid rectangle. It was tolerant of slight misalignment of straight lines and

to the line-bowing distortions introduced by our camera. Camera movement
and vibration during the recognition process did not adversely affect tracking,

although it did slow down the recognition process as tracker uncertainties in-

creased with rapid movements.
Due to problems with the Macintosh TCP/IP implementation, our frame

rate was limited to 3 Hz. In tests using pre-captured images forwarded from one

13

Sunto another, real-time performance of 15 frames/second was achieved. Since
total network traffic for the schema and four trackers is less than 10kBytes/frame,

we expected that a very slight upgrade of our experimental apparatus would al-

low us to achieve real-time performance.

4.2 Tracking a Tennis Ball

Encouraged by our initial success with fairly limited hardware, we set out to

migrate our system to new hardware, including a Dell Pentium running Linux

containing a Matrox frame grabber, and a color camera. As we migrated the
code, we also added a number of new features including the distributed object

system and DOPP, support for color images, distributed access to the image

stream, an interface to a 5-DOF RHINO XR-4 robot arm, and support for the

schema model parser.

Once this work was completed, we set up an experiment where the robot

arm (with the camera mounted on top in an eye-in-hand configuration) was

intended to track a tennis ball pendulum swinging in front of it. We immediately
discovered that our new system was quite an improvement over the old one.

The TCP/IP limitations were gone, and we could easily track the tennis ball

at over 10 fps, even when the ball was moving quite quickly in the camera's
field of view. Unfortunately, limitations in the Rhino arm's control hardware,

specifically latencies in command execution, prevented the arm from being able

to follow the ball at reasonable speeds as it moved off the edges of the camera's

view. Overall, though, the experiment was a success, proving that ARaUS could

support visual tracking at real-time rates, and confirming that our newly added

systems were functional.

4.3 Following a Blob

After discovering the limitations of the robot arm, we modified our experiment

to accommodate those limitations while still closing the control loop. Our new

goal was to track a blob of color moving around on the desktop while adjusting

the position of the arm to keep the blob centered in the field of view.

The result was that the system was able to track a blob drawn on a piece

of paper as it was moved fairly rapidly around around on the desktop. By this
point we had acquired another Dell Pentium running Linux, and were also able

to test our object distribution code. In further experiments the system was able

to track several blobs simultaneously, with the trackers scattered across both

machines, and with little noticeable degradation in performance.

14

5 Recent Progress and Future Plans

Under subsequent funding from NASA JSC 2 we have made significant improve-
ments to our work which will be documented more fully in a future report, but

are presented briefly here.

5.1 Dynamic Variables

For many robot tasks, the significant variables are derived from descriptions of

physical objects which are within the robot's visual space. Interaction with a dy-

namic world requires that these descriptions be robust and updated in a timely
fashion. For arm-like robot manipulators and for mobile robots, measures0f the

world's state can be thought of as dynamic variables which continuously change

to reflect changes in the environment. Many sorts of time-dependent sensor

inputs can .be thought of as dynamic variables, including those for continuous
motion control laws, for identification of objects and places, and for transition
functions in a discrete-event model of the world. In this formulation, the task of

robot sensory systems is to provide and maintain bindings for dynamic variables,

which are symbolic representations of properties of the environment relevant to
the robot's current action.

For example, a mobile robot trying to visually guide itself through a doorway

needs to locate and track the edges of the door-frame; a robot arm grasping an

object needs to know the position of its gripper and the object it is trying to

grasp. The dynamic variables associated with these tasks are representations
of the spatial and functional properties of the relevant objects as they relate to
the robot's task.

To address this issue, we have added support for dynamic variables to our

system. There is a straightforward method for describing these variables, and

for indicating how to maintain the link between the symbolic representation

of a visual percept and the dynamic image-space features it is founded upon.

Though originally designed with visual applications in mind, this abstraction
is also useful for other external sensors like sonar or even internal sensors like

battery voltage or motor current.

5.2 The SPLAT Package

SPLAT 3 is designed to provide a structured framework for specifying robot
actions. An individual splat defines a method or methods to achieve a given goal.

The system depends on dynamic variables (and slap fluents) for its operation,

and provides the control link between the continuously-updated measures of
object properties and location generated by the dynamic variables, and the

effectors that produce action in the world. The SPLAT framework is patterned

2,,Spatial Reasoning for Scalable Distributed Mobile Robot Vision." (NAG 9-898.) Ben-

jamin Kuipers, P.I. 8-6-96 to 7-31-97.

3 Simple Provisional Language for Actions and Tasks

15

afterthat of theUniversityof Chicago'sRAPS[2],andleveragesoff of our
improvementsto RSCHEMEto providefullyasynchronous,threadedbehaviors.

5.3 Blob Tracker Improvements

Blob trackers now orient themselves to the major axis (if there is one) of the

blob being tracked. This is accomplished through a simple moment calculation
which keeps the vertical axis of the attention buffer aligned with the blob's

longest axis, and provides some measure of the orientation of elongated objects.

5.4 Color Oracles

In our earlier system, oracles only used a fixed set of colors in making their

determinations. We now have adaptive oracles which can discard inappropriate

outlying pixels and add colors that are both similar to those already accepted by

the oracle and which occur in regions where all the surrounding pixels are also

already permitted. This has the effect of adapting to the color of a particular
object and to smooth color variances over time. This has generally tightened

the boundaries of the feature being tracked, and allows the system to handle

more lighting variation.

5.5 Sorting Blocks

To test and demonstrate the functionality of our improved system, we designed

a block sorting experiment. The goal is for the Rhino arm to sort a number of

blocks into bins according to their color.

Figure 6 shows the robot and its workspace for these experiments. The

camera is a low-cost CCD type with a fixed-focus lens on a mount attached to
the wrist above the wrist-rotation joint. With only knowledge of the qualitative

relationships between the sign of joint-motion direction and the image-space

motion of an object at rest on the tabletop, the arm has been able to reliably

sort the blocks into the appropriate bin.

5.6 Inexpensive Pan-Tilt-Vergence Platform

We have recently discovered an extremely flexible and inexpensive servo con-

troller which should make it possible to construct a very inexpensive (probably

less than $300) pan-tilt-vergence platform where each of the cameras is capable
of independent or linked positioning. We should be constructing at least one of
these in the near future.

5.7 A New Mobile Platform

In connection with our related research into assistive technologies for the dis-
abled, we have purchased, and are awaiting delivery of a powered wheelchair

with on-board sonar, IR sensors, and computer control. We plan to use this

16

Figure6: WorkspacefortheLEGOTM sorting task.

17

as the primary platform for our future vision research. Once the chair arrives,

we will augment its current hardware with several PC-class motherboards, a

two frame grabbers, and a pair of color cameras to make it a fully autonomous

vision-based mobile platform.

6 Summary

We have describedour distributedarchitecturefor robot vision,ARGUS which

exploitsthe natural parallelismof typicalvisualtasks. The main advantages

of our approach are twofold. First,the trackingofprimitivefeaturesisan op-

erationthat can often be performed at low-resolution,and requiresonly local

image informationand no interactionwith otherprimitivefeaturetrackers.This

allowsthe trackerstobe distributedacrossa network ofworkstationsor inexpen-

sivededicated processors.Second, by separatinghigher-levelmodel matching

from primitivefeaturetracking,we permit real-timetrackingindynamic scenes

without requiringa fullcycleofschema completion foreach frame.

ARGUS can track constellationsof primitiveimage featureswhich match

tree-structuredhierarchicalmodels (perceptualschemas) of the objectsrepre-

sented by thosefeatures.These hierarchicalmodels areconstructeddynamically

from descriptionswhich specifythe topologicalstructureofeach model and the

geometric constraintsamong the elements of that structure.ARGUS supports

distributedcomputation through itsdistributedobject system which, among

other things,allowsschemas and theirconstituentfeaturetrackersto be trans-

parently distributedacrossa collectionofmachines.

During development, we have performed a number ofexperilnentstoevaluate

the system'semerging performance. Our earliestexperiments on limitedvision

hardware convinced us thatour approach was viable,and that the system should

perform wellon more reasonablehardware. Our laterexperiments validatedthat

belief,demonstrating the system trackingobjectsin the fieldof view at real-

time frame rates,and eventuallyclosingthe controlloop by linkingmovement

of a robot arm to the movement oftrackedobjects.

Finally,we have brieflydiscussedour more recentwork which includesthe

creation a dynamic variableabstractionto facilitatelinkingsymbolic control

variablestodynamic visualphenomena, the development ofa language tailored

to the task of controllingrobot actions,the completion of a new experiment

which demonstrates good performance for a closed-loopsortingtask,and the

planned acquisitionofsome new hardware, includinga powered wheelchairand

an inexpensivepan-tilt-vergenceplatform.

References

[i]Ronald C. Arkin and Douglas MacKenzie. Temporal coordinationof per-

ceptualalgorithms formobile robot navigation.IEEE Trans.on Robotics

and Automation, I0(3):276-286,1994.

18

[2] R. Peter Bonasso, David Kortenkamp, David P. Miller, and Mark Slack.

Experiences with an architecture for intelligent, reactive agents. In Proc.

l_th Int. Joint Conf. on Artificial Intelligence (IJCAI-95), 1995.

[3] Kevin J. Bradshaw, Phillip F. McLauchlan, Ian D. Reid, and David W
Murray. Saccade and pursuit on an active head/eye platform. Image and

Vision Computing, 12(3):155-163, 1994.

[4] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing.
Addison-Wesley, New York, 1992.

[5] William S. Gribble. Argus: a distributed environment for real-time vision.
Master's thesis, University of Texas at Austin, Austin, Texas, 1995.

[6] William S. Gribble. Slow visual search in a fast-changing world. In Pro-
ceedings of the 1995 IEEE Symposium on Computer Vision (ISCV-95),

1995.

[7] B. J. Kuipers. A frame for frames: representing knowledge for recognition.
In D. G. Bobrow and A. Collins, editors, Representation and Understand-

ing, pages 151-184. Academic Press, New York, 1975.

[8] B. J. Kuipers and Tod Levitt. Navigation and mapping in large scale
space. AI Magazine, 9(2):25-43, 1988. Reprinted in Advances in Spatial

Reasoning, Volume 2, Su-shing Chen (Ed.), Norwood N J: Ablex Publishing,
1990.

[9] Benjamin Kuipers, William Gribble, and Robert Browning. Dynamic bind-

ing of visual percepts for robot control, 1997.

[10] Wan Yik Lee. Abstract mapping senses and a heterogeneous control based
on landmark vector sense, unpublished paper, August 1992.

[11] M. Mirmehdi and T. J. Ellis. Parallel approach to tracking edge segments
in dynamic scenes. Image and Vision Computing, 11(1):35-47, 1993.

[12] Nikolaos P. Papanikolopoulos and Pradeep K. Khosla. Adaptive robotic

visual tracking: Theory and experiments. IEEE Trans. on Automatic Con-

troi, 38(3):429-445, March 1993.

[13] D. Pierce and B. Kuipers. Learning to explore and build maps. In Proc. 12th
National Conf. on Artificial Intelligence (AAAI-94). AAAI/MIT Press,
1994.

[14] Shimon Ullman. Visual routines. Cognition, 18:97-159, 1984.

[15] P. H. Welch and D. C. Wood. Image tracking in real-time: a transputer
emulation of some early mammalian vision processes. Image and Vision

Computing, 11(4):221-228, 1993.

19

